首页> 外文OA文献 >Thermodynamic and mechanical properties of copper precipitates in alpha-iron from atomistic simulations
【2h】

Thermodynamic and mechanical properties of copper precipitates in alpha-iron from atomistic simulations

机译:铜中析出物的热力学和力学性质   来自原子模拟的α-铁

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Fe-Cu system has attracted much attention over the last several decadesdue to its technological importance as a model alloy for Cu steels. In spite ofthese efforts several aspects of its phase diagram remain unexplained. Here weuse atomistic simulations to characterize the polymorphic phase diagram of Cuprecipitates in body-centered cubic (BCC) Fe and establish a consistent linkbetween their thermodynamic and mechanical properties in terms of thermalstability, shape, and strength. The size at which Cu precipitates transformfrom BCC to a close-packed 9R structure is found to be strongly temperaturedependent, ranging from approximately 4 nm in diameter (~2,700 atoms) at 200 Kto about 8 nm (~22,800 atoms) at 700 K. These numbers are in very goodagreement with the interpretation of experimental data given Monzen et al.[Phil. Mag. A 80, 711 (2000)]. The strong temperature dependence originatesfrom the entropic stabilization of BCC Cu, which is mechanically unstable as abulk phase. While at high temperatures the transition exhibits first-ordercharacteristics, the hysteresis, and thus the nucleation barrier, vanish attemperatures below approximately 300\,K. This behavior is explained in terms ofthe mutual cancellation of the energy differences between core and shell(wetting layer) regions of BCC and 9R nanoprecipitates, respectively. Theproposed mechanism is not specific for the Fe--Cu system but could generally beobserved in immiscible systems, whenever the minority component is unstable inthe lattice structure of the host matrix. Finally, we also study theinteraction of precipitates with screw dislocations as a function of bothstructure and orientation. The results provide a coherent picture ofprecipitate strength that unifies previous calculations and experimentalobservations.
机译:由于其作为铜钢模型合金的技术重要性,在过去的几十年中,Fe-Cu体系引起了广泛的关注。尽管进行了这些努力,但其相图的几个方面仍然无法解释。在这里,我们使用原子模拟来表征在体心立方(BCC)铁中铜沉淀物的多晶相图,并在热稳定性,形状和强度方面在它们的热力学和机械性质之间建立一致的联系。发现铜沉淀物从BCC转变为密排9R结构的大小与温度密切相关,范围从200 K的直径约4 nm(〜2,700原子)到700 K的约8 nm(约22,800原子)。给出的数字与Monzen等人给出的对实验数据的解释非常吻合。魔术师A 80,711(2000)]。强烈的温度依赖性源自BCC Cu的熵稳定,BCC Cu的熵稳定在机械上是不稳定的。在高温下,该转变表现出一阶特征,即滞后现象,因此成核势垒在低于约300 \ K的温度下消失。分别用BCC和9R纳米沉淀的核和壳(润湿层)区域之间的能量差相互抵消来解释此行为。所提出的机制并非特定于Fe-Cu系统,但只要少数元素在主体基质的晶格结构中不稳定,通常可以在不混溶的系统中观察到。最后,我们还研究了析出物与螺旋位错的相互作用,该相互作用是结构和取向的函数。结果提供了一个统一的沉淀强度图,该图统一了先前的计算和实验观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号